140 coMPUTE June, 1981, ks 13
Aim User | i
Joe! Swank
Rockaway, OR
Q[Méﬁ& is Rockwell’s entry into the SBC (Single B ;
oard Ci 5 rk rovides many S
rd Computer) market. It pr oude§ many . 337 “x ENTRY FOR USER OUTPUT
advanced features not usually found in inexpensive 324 o
systems. Among these is the capability for device . S0 Bea DGR
independent I/O. A]c_mg with this is the capability 237C 20988 ISR PHXY ’;CREFEY SEL FOR QUTCHR
for the user to add his own I/O device or devices. B 805 B T “Ned “engon
A R . F0E69R JSR FILEQ SGET
The AIM user manual devotes three pages w this 5387 anls Loy WHOREE kA TR F SECTORS
feature. The information here is accurate but 9933933 ‘3?2% %‘%‘A acgr;apm)m
insutficient. Since I have recently interfaced a disk 353 20157° Ter o2 T sOPEN FILE
system to my AIM via the user I/O function, T have 3332 292198 Ha1eko JoR ROCIN iRESYORE 2ERD PAGE
had the opportunity to investigate this feature 8399 60 SKIPUD RTS ’ E
thoroughly. . 9399 OUTPUT OME CHARACTER T0O DISK
Whenever }Iqe AIM firmware receives a WP es . OUTCHR RLA SGET QUTELT BYTE
commaud requiring input or output, it calls a ;93%%% FZ%EBEEB %:.';; %EI:{UG ADELEIE Bk
H i - o :SAVE REGS
routine to determine which device to use. Two 9381 309698 I FOTTY ITNT PIRe
routines are used for this purpose: WHEREI for S Sl +SEND CHARACTER
input and WHEREO for output. WHEREI and JOV ERROUT . PUT ERROR MESSAGE
WHEREO prompt the user for the device to be i éRmUT PHF;
ussed. The user enters a one character device code: I3 207EED IR ';SREUSEETEEIE.%RELRGS
‘ . BT 3 .- X H
P f(_?r the printer, ‘T f(.)r tape, eic. The WHERE 5380 R924 LDR #’8° R e R < ERROR CODE
routine then sets a flag in memory (INFLG or 2352 200 g QuTALL
selec i . 8¢ 2046 ISR NUMR : TN HEX
OL]?TP?LG). TIIE: selected device ihe-n becomes the 5388 Socion JRET JoR ROLIN RAGTERE ZERD PAGE
active input device {AID) or the active output 93BC 4CALE] JHP COMIN BRCK TO MONITOR
device (AOD). Subsequently the AIM input or S38F A90C RAOPN LDA WOPFILE ;OPEN FILE ERROR
: et e 33C1 DOEE BNE ERROUT
output routine checks INFLG or OUTFLG and
calls the appropriate input or output routine for 93c3 *
the chos'en (.ievu:g*. When the user chooses the ‘U’ 99%%':"3 Ve ENTRY FOR USER IHPUT CALL
code an indirect jump is performed to a vector on Fi o
}f)age one. There F}s}a vector for usert fputt:atnd one kI BN | USRI g Do JCARRY SET FOR INPUT
or user output. These vectors must be set to point 203798 ISR INITB STNIT HI ZERO PRGE
to the I/O drivers for the user device. The user 938 208£58 358 P11 T PTRe
routine is called once from The WHERE subroutine 331 ‘4capss THP OPENU *.60 OPER
to per(orlln initialization for th_e device and once 9304 . GET A CHERACTER FROM DISK
from the input or output routine for ?"‘C}‘ character gun4 209EEB INCHR ISR PHRY SAVE REGS
1o be processed. So that the user routines can 23br 200598 Jrgg POINTI #INIT POINTERS
istinoui _— initializari 93DE BDO401 LDA $0104,% SWHERE CRLLED FROM?
distinguish between a call for initialization and a Zave B0 LA S0104 i L
call for 1/O the carry flag of the processor status 23D £004) FYES, GO GET NEXT FILE
register is clear for a call for initialization and set 93E4 Bo18 BNE GETIT N3, JUST GET NEXT CHPR
for a call for 1/O. Also the output routine must pull 355 ps20 dsof g 3 b1
the character to be output from the stack. The user 3’3‘:%5; :223’;‘: o :;EZWE%E‘;%I s g E;:",:;:LQE'E’OST:’IH%:‘E Heme
routines return to the ATM monitor via an RTS B 0 oE 8 SCERR EUFFER TNDEX
(ReTurn from Subroutine) instruction. The above D gggg e fg&f&"
is all explained in the AIM manual. There area S pEs DA CFCBRTR>.Y ;RETRIEUE DRIVEW FROM FCB
few other important considerations though. 938 201008 ISR RECPEN :OPEN. NEW FILE
" S3FE 4C9093 NP OPHBIC SFINTSH
The manual does not mention the fact that the < c S
user routines must preserve the contents of the ;.?gf gg;-f” LAt §§§ SEFH'R 1 cHoaRAG
registers. The input routine must preserve X and
Y, and the output routine must preserve X, Y, and
i i vo sul ines fe 9403 CB0E CHP SENDOFT SEMD OF FILE?
A. ':Fhe AIM momfor pyowdes two subroutines for 2403 LotE Sl ok "TQEUE
saving the X and Y registers on the stack, and 9407 DORD BRE ERROUT :ND, MOST ROR

142

COMPUTH June, 1781, lssue 13,

restoring them without affecting the A
register. These are PHXY and PLXY.
I found need to investigate these two
interesting subroutines when I tried to
enter PLXY via a JMP (Jump) instruc-
tion instead of a JSR (Jump to Sub-
Routine) instruction. Whenever a
subroutine call is the last instruction of
another subroutine I usually enter it
with a JMP instruction instead of a JSR
followed by a RTS. This saves one byte
and normally works the same. This
does not work for PHXY or PLXY
because of the way they manipulate
the stack. When a subroutine is entered
via JSR, the return address is the Jast
two bytes on the stack. Anything that
the subroutine pushes on the stack
must be pulled off before it can return
properly. To get around this problem
PHXY and PLXY use a third subrou-
tine called SWSTAK (SWap the
STAcK). SWSTAK swaps the 2 bytes
that are 2 locations back on the stack
with the 2 bytes that are 4 locations
back on the stack. So, PHXY pushes
the X and Y registers onto the stack
and calls SWSTAK. SWSTAK swaps
the X and Y bytes with the return
address for PHXY and then returns to
PHXY. PHXY then returns to its caller
with the X and Y register values next
on the stack. PLXY works just the
opposite. It first calls SWSTAK to
swap the saved X and Y registers with
its return address. It then pulls X and
Y off the stack and returns. If PLXY is
entered via a JMP instead of a JSR the
stack is not in the expected condition
and PLXY ends up returning to the
address contained in the saved X and
Y registers giving unpredictable
results. As long as they are used
properly, PHXY and PLXY can be
used by the user I/O routines to save
and restore the X and Y registers.

A problem I had with the output
routine is detecting the end of the
output stream. Some devices such as
tape and disk need to have a termina-
tion or ‘close’ routine that is executed
after all output is complete. This
routine must write the last buffer or,
as in the case of disk, update the
directory. The AIM output routine
gives the user routine no indication of
when output is complete. There is no
consistant way to determine this from
the data itself. I solved this problem by
using one of the

0000 t+ PL6S .DFILE INTERFACE

0000 H

0000 ; PL6E5 DATA AREAS

ooon i

0000 PLDRIV =$0158 ;PL65 SAVEA DRIVE NUMBER HERE
Qooo PLBUFF =35014B yPL6S SAVES FILE RAME HERE
0000 ; AIM ADDRESSES

0000 DIBUFF =$A438 ;DISPLAY BUFFER
0000 PHXY =$EBIE :SAVE X AND Y REGS
0000 H ZAPDOS ADDRESSES

0000 POINTI =$9B8E ;POINT TO INPUT FCRB
0000 PLESIN =$93EB $ENTRY FOR DFILE INTERFACE
o000 FCBPTR =$F8 ;POINTER TO FCB
ogoe DRIVE =6 ;OFFSET TO DRIVE # IN FCB
0000 H

0000 *=5112

0112 ;F3 VECTOR

0112 4CDOOF JMP DFILE i

0115 *=S0FDO

OFDO H

OFD0 209EEB DFILE JSR PHXY 31SAVE REGS

OFD1 A206 LDX #6

OFD5 BD4BO1 DLUP LDA PLBUFF,X ;COPY FILE NAME 10 DIBUFF
OFD8 9D38A4 STA DIBUFF,X

OFDB CA DEX

OFDC 10F7 BFL DLUP

OFDE A220 LDA #8520

OFER 8D3EA4 2TA DIBUFF+6 ;MARK END NF NAME
OFE3 208E9B JSR POINTI ;POINT TO INPUT FCR
OFE6 AD5801 1LDA PLDRIV ;GET PL65 DRIVE
OFEY C9FE CMP #SFE ;ANY SPECIFIED?
OFEB F007 BEQ NODRV iND, SKIP

OFED 6A ROR A

OFEE 6A ROR A sSHIFT TC 2 HI BITS
OFEF 6A ROR A

OFF0 ADOGE LDY EDRIVE

OFF2 %91F8 STA (FCBPTR),Y ;AND SAVE IN FCB
OFF4 4CEB93 NODRV JMP PL65IN ;ENTER ZAPDOS

OFF7 .END

OFF7 ERRORS= 0000

0000 ; TIMER BUG VERIFICATION PROGRAM

0000 DI1024 =3A497 $TIME X 1024

0000 RINT =$2485 ; TIME OUT

0000 COMIN =$E1AL ;RETURN TO MONITOR
0000 CUREAD =$FE83 ; INPUT A CHARACTER
0000 RED2 =5E976 ;ECHO A CHAR

0000 *=5200

0200 2083FF READ JSR CUREAD ;READ A CHAR

0203 48 PHA ;SAVE IT

0204 ASFF SET LDA §SFF 7255 X 1024

0206 8DI7A4 STA DIL024 ;START TIMER

0209 2C8524 RIT RINT ;TIME UP ALREADY?
g20c 1003 BPL LUP ;NO, TRY AGRIN
020F 4CAlEL JMP COMIN $EXIT ON TIMER ERRNR
0211 2C85A4 TLUP BIT RINT 3 TIME UP?

0214 10FB EPL LUP ; NO, WAIT

0216 68 PLA

0217 2076E9 JER RED2 jECHO CHAR

021A 4C0002 JMP READ JREPEAT

021D +END

021D ERRORS= 0000

AIM user function keys to execute the routine to
close the output file. This means that I must
remember to push that key after each use of user
output. This is inconvenient but the only feasible
way to solve the problem.

June, 1981 Issua 13

COMPUTE!

143

An even greater problem is how to handle end
of file on input. My disk routines detect end of file
and return a condition code, but there is no way to
tell the AIM routine that there is no more data.
Each different AIM program detects the end from
the data in its own way. The ‘L’ command uses a
zero length record; the editor uses two successive
CRs (carriage returns); the assembler uses a END
statement followed by two CRs; BASIC uses a
CTL-Z. Another inconsistancy in the ‘L’ command
causes it to try to read 5 or 6 more characters from
the final zero length record than the ‘D’ command
wrote. The user input routine must compensate
for this and provide pad characters or the ‘L’
command will not terminate properly. When the
KBD/TTY switch is in the TTY positionn, and
OUTFLG is set to 'U’, the AIM CRLF routine
inserts an LF(Line Feed) and a null {AIM uses hex
FF for a null) after each CR. On input AIM does
not expect these characters to be included. The ‘L’
command will ignore the LFs and nulls when
inputting a line of data. The editor will ignore the
LFs but not the nulls. The null between the two
successive CRs that end the file cause the editor to
fail to recognize the end and continue to request
data. To solve this problem, the nulls must be
deleted from either the input stream or the output
stream. I chose o delete nulls from the output
stream because this saves disk storage space.

The assembler requires that the source file be
read twice, once for each pass. It is designed to
read the source file from tape. Before starting pass
I it saves the name of the tape file at location $A7.
Before starting pass 2 it moves the name of the
tape file back to the name buffer (§A42E) and to
the display butter (§A438). It then calls the tape
open routine. If the source is coming from the ‘U’
device it moves the file name and then makes an
extra call to the user input routine. However it
does not indicate to the user input routine that the
call is to open a file and not to read another charac-
ter. The only way I could find to detect the extra
call is to test the stack to see what page the cail was
from. The assembler also makes an extra call to the
user input routine when it encounters a .FILE
statement. The .FILE statement is used to link
source files logether so that programs too long for
the editor buffer may be assembled. When the
assembler encounters a .FILE statement it moves
the file name to the name buffer and display
buffer and makes a call to the user input routine.
Again the only way to distinguish this call from a
normal input call is by checking the stack. While
investigating the .FILE statement I found an
undocumented feature of the assembler. The
-END statement may also contain a file name. If it
does, then that file is used to start pass 2 instead of
the one saved at location $A7. This allows pass 2 to
start with a differend file than pass 1. Of what use is

6502 FORTH

6502 FORTH is a complete programming system
which contains an interpreter/compiler as well
as an assembler and editor.

6502 FORTH runs on a KIM-1 with a serial terminal.
{Terminal should be at least 64 chr. wide)

All terminal 1/0 is funnelled through a jump table near
the beginning of the software and can easily be
changed to jump to user written 1/0 drivers.

6502 FORTH uses cassette for the system mass
storage device

Cassette read/write routines are built in (includes
Hypertape).

92 op-words are built into the standard vocabulary.

Excellent machine language interface.

6502 FORTH as user extensible.

6502 FORTH is a true implementation of forth
according to the criteria set down by the forth
interest group.

Specialized vocabularies can be developed for specific
applications.

6502 FORTH resides in 8K of RAM starting at $2000
and can operate with as little as 4K of additional
contiguous RAM.

6502 FORTH PRICE LIST
KIM CASSETTE, USER MANUAL, AND
COMPLETE ANNOTATED SOURCE
LISTING $90.00
($2000 VERSION) PLUSS&H 4.00
USER MANUAL (CREDITABLE
TOWARDS SOFTWARE
PURCHASE)

$15.00
PLUS S&H 1.50
SEND A S.AS.E. FOR A FORTH
BIBLIOGRAPHY AND A COM.-
PLETE LIST OF 6502 SOFTWARE,
EPROM FIRMWARE (FOR KIM,
SUPERKIM, AIM, SYM, and
APPLE) AND 6502 DESIGN
CONSULTING SERVICES
AVAILABLE :

Eric Rehnke
1067 Jadestone Lane
Corona, CA 91720

Now Available For
KIM, AIM, And SYM

44 COMPUTE!

June, 1981, Issue 13.

this feature? Sometimes it may be useful to have
the first file of a program contain only label defini-
tions (= directives). Since these statements only
make entries in the symbol table and generate no
code it is not necessary to read them again for pass
2. This feature can be used to save time and printer
paper. You may have a file containing definitions
for all the AIM subroutine addresses that you use
for every program you write, but they still consume
no extra space in the source file or the program
listing. You can use the .END feature to omit the
definition file from pass 2, but remember to set the
program counter in the first file to be read in pass
2, instead of in the definitions file or assembly
errors may result.

So, the user input must detect the special open
calls by the assembler .FILE and .END statements,
and the start of pass 2. This can only be done by
checking the page of the calling routine. These
calls are made from pages $D4 and $D6. It must
also provide pad characters for the 'L’ command.
The user output routine must delete all null
characters so that the editor can properly recognize
the end of the file on input. As an example I have
included listing 1 which is the user 170 interface
for my disk system. The disk routines are not
included. These routines work with all AIM com-
mands that use the A1D or AOD including ‘L, ‘D',
the editor, the assembler, BASIC, and PL/65.

PL/65 also has a linked file feature. It uses the
.TFILE statement to link tape files and the .DFILE
statement to link disk files. The .TFILE statement
causes the tape open routine to be executed. The
.DFILE statement executes the disk open routine
through the user F3 key vector. This makes the
disk open interface much more straightforward
than the way the assembler does it. PL/63 stores the
file name at location $14B and the drive number at
location $158 before calling the F3 key routine.
Listing 2 is the routine needed to implement the
.DFILE statement.

Another consideration is console communica-
tions. It may be necessary to request information
from the user during user I/O. For example, my
disk initialization routines prompt the user for the
name of the file to be used. Care must be taken
which AIM monitor subroutines ar¢ used at this
time. Some communicate with the keyboard and
display only, while others use the AID or AOD.
Normally the keyboard and display are the AID
and AOD so calling OUTPUT and QOUTALL, for
example, give the same results. After the WHERE
subroutine is executed the AID or AOD has
changed. If the user output initialization calls
OUTALL instead of OUTPUT to display a charac-
ter, it will end up calling itself. The results are
unprediciable. There are two ways to solve this
problem. Either be sure to call only keyboard/dis-
play routines or change the AID or AOD to the

keyboard/display before attempting to communi-
cate with the user, and restore the AID or AOD
after communications is complete.

You can make your programs device inde-
pendent also. To make a program device inde-
pendent, you must call the WHERE subroutines
before doing any I/0 that is to be device independ-
ent. The data must be read or written with subrou-
tines that use the AID or AOD. Here zgain care
must be taken to use only AID and AOD subrou-
tines and not the keyboard/display subroutines.
Calling a wrong subroutine could cause part of the
data to end up on the display or the program could
hang up waiting for input from the keyboard.
Subroutine LL can be used to return the keyboard
and display to the AID and AOD. Even BASIC
programs can change the AID and AQD by calling
the WHERE subroutines with the USR function.
This will cause BASIC input or outpu: to be redi-
rected. Of course when using some devices such as
tape or disk there are close routines that must be
executed to terminate output. Routine DU12
($E511) does this for AIM tape output.

Another discovery that I made is that AIM's
6532 timer has the same bug as KIM’s 6530 timer.
KIM’s 6530 has a bug that causes it to ignore a start
command on the average of once every 256 starts.
I chose to use the 6532 because it has a maximum
interval of more than a quarter of a second, while
the 67522 timer can only time up to 65 miliseconds.
I was immediately suspicious of the 6532 when I
saw that it works exactly like the 6530 and that the
two chips have other similar features. So I wrote a
small program to prove the prescence of this bug.
Listing 3 is the result.

The 6530/32 timer, when not in use, is contin-
uously counting down from $FF to 0 at the rate of
the CPU clock signal. The bug occurs when the
CPU trys to store a starting value in the counter
register just as the count is passing zero. When this
occurs the timer ignores the CPU. The result is an
immediate time out the first time the program
checks the timer. The routine in listing 3 proves
that the 6532 is guilty. It first reads a character
from the keyboard to get a random starting time
for the timer. It then starts the timer for about a
quarter second and checks to see if there is an
immediate time out. If there is, it returns to the
monitor. If there is not an immediate time out it
enters a loop and waits for the timer to time out.
Then it echos the character and repeats the se-
quence. If the timer is working correctly the
program can never end, unless the escape key is
used. It may take several hundred trys sometimes,
but this program will always cventually catch the
timer bug and return to the monitor.

This bug will cause occasional errors in my
disk system if not circumvented. The way to cir-
cumvent this bug is to always use 2 successive stores

